
Unified Emulator Interface Specification
Version 1.0.2

April 2006

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 1

Copyright Notice

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 2

License

LIMITED LICENSE GRANTS
1. License Grant. Licensor hereby grants you a perpetual, nonexclusive, nontransferable, worldwide, fully paidup, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 2 below, patent rights it may have
covering the Specification to:
a. display, perform and copy the Specification;
b. create and distribute implementations, in whole or in part, of the Specification; and
c. distribute the Specification, unmodified, to third parties provided that you pass through and make any further distribution of the UEI
Specification subject to this license. No license is granted hereunder for any other purpose (including, for example, modifying the Specification,
other than to the extent of your fair use rights). Also, no right, title, or interest in or to any trademarks, service marks, or trade names of
Licensor or Licensor's licensors,
Licensor or the Licensor's licensors is granted hereunder.
2. Patent Rights.
a. Licensor covenants that, subject solely to the reciprocity requirement described below, it will not seek to enforce any of its Necessary Claims
against any compliant implementation of the UEI Specification, where “compliant” is understood to be determined through actual functionality
as evidenced by the implementation in question, whether or not validated by any SelfServ Tests. Notwithstanding the commitment above, this
covenant shall not apply, and Licensor makes no assurance, covenant or commitment not to assert or enforce any or all of its patent rights
against any individual, corporation or other entity that asserts, threatens or seeks at any time to enforce its own or another party's Necessary
Claims against any compliant implementation of the UEI Specification.
b. This covenant is not an assurance either (i) that any of Licensee's issued patents cover an UEI implementation or are enforceable, or (ii) that
an UEI implementation would not infringe patents or other intellectual property rights of any third party.
c. For the purposes of this Section 2, “Necessary Claims” means those claims of all patents, pending patent applications and utility models,
regardless of when issued or effective, which are enforceable by Licensor (including by subsidiaries under its control) and which are necessarily
infringed by a compliant implementation of the UEI Specification as approved by the UEI Board, where such infringement could not have been
avoided by another technically feasible noninfringing implementation of the UEI Specification. Notwithstanding the foregoing sentence,
Necessary Claims do not include any claims other than those set forth above even if contained in the same patent as Necessary Claims.
Similarly, Necessary Claims do not include any claims enforceable against elements or features of a product which do not themselves
implement portions of the UEI Specification, even where such elements or features are included in a product which also includes an
implementation of the UEI Specification.
DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". Licensor MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR
THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any commitment
to release or implement any portion of the Specification in any product. In addition, the Specification could include technical inaccuracies or
typographical errors.
LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL Licensor OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF Licensor
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You will hold Licensor harmless from any claims arising or resulting from your use of the UEI Specification, including your distribution of any
implementation of the UEI Specification.
MISCELLANEOUS
Restricted Rights Legend. U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation
shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.72024 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for nonDoD acquisitions).
Governing Law. Any action relating to or arising out of this Agreement will be governed by California law and controlling U.S. federal law. The
U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.
Export Control. As further described at http://www.sun.com/its, You agree to comply with applicable U.S. Export controls and trade laws of
other countries that apply to the UEI Specification.
Integration. This License represents the complete agreement of the parties concerning the subject matter hereof.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 3

Table of Contents

1 Introduction.. 5
2 Directory Structure... 5
3 Commands.. 6
4 Preverifier Execution.. 7
5 Getting Information About the Emulator.. 9

5.1 Emulator Information Arguments.. 9
5.2 Return Code... 10
5.3 Query Output.. 10

6 Running Local Applications... 13
7 Running in OTA Mode... 14
8 Debugging and Testing.. 18

8.1 Generating Diagnostic Output.. 18
8.2 Connecting the Emulator to a Debugger.. 19
8.3 Using the Emulator for Automated Testing... 20

9 Keytool Execution.. 20
10 API Manifests... 22

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 4

1 Introduction
The Unified Emulator Interface (UEI) is a standard for interaction between Integrated
Development Environments (IDEs) and device emulators. IDE vendors who implement the UEI
specification know that their products will work with a wide variety of device emulators. Device
manufacturers who implement the UEI specification in an emulator are assured that their
emulator will work with a wide variety of development tools. Developers are happy because
their tools and emulators are interoperable. Customers win because the UEI simplifies the
process of creating applications.

This document describes the requirements that an emulator must meet to be compliant with
version 1.0.1 of the UEI.

Throughout this specification, the following definitions are used:

• REQUIRED means that the feature must be implemented.

• OPTIONAL means that the feature is not required to be implemented. However, if it is
implemented, the implementation must fully meet the specification of the feature.

Unless noted otherwise, every part of the specification is required to be implemented.
Optional features are noted as such.

NOTE: In this document, executable files have the extension .exe. This is only the case in
Microsoft Windows environments. On UNIX® and Linux systems, these files are understood as
not having the .exe extension. Therefore, any test for the presence or absence of these files
must test for the correct file name.

This specification contains references to other documents:

• The CLDC specification includes a description of preverifying class files.

http://jcp.org/en/jsr/detail?id=139

• The Java Debug Wire Protocol (JDWP) describes a standard interface for debugging
applications.

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdwp-spec.html

2 Directory Structure
The emulator must be entirely contained within a single directory.

Inside the emulator directory, three directories are required. Additional directories can be
present, but the following are required.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 5

Table 1 Directory Structure

Directory Description
bin Contains commands. The next section describes the required commands.
lib Contains profile and configuration API class file archives. By default, all

archives (files with .jar or .zip extensions) in the lib directory must be
used for MIDlet compilation and preverification. Subdirectories under lib must
not be included. This default behavior can be modified with the
bootclasspath key returned by -Xquery. See the section Query Format for
more information.

JAR files in lib should contain manifest files in the format described in the
section API Manifests.

NOTE: For the default behavior to work, emulators must archive the API
classfiles. If .class files must be used outside of an archive, the
bootclasspath key must be properly set in the -Xquery response.

docs Contains API documentation generated by the Javadoc™ tool. The root of the
documentation tree must be docs/index.html.

3 Commands
The following table contains a list of the commands defined by the UEI. The commands are
located in the bin directory.

Table 2 Commands

Command
Name

Description

emulator.exe Runs the emulator. The emulator must be a MIDP implementation.
Any textual output generated by the emulator (for example, from the
-Xquery or -Xverbose command-line arguments, as well as output
from System.out.println) must be made to standard output if
possible. This allows for programmatic parsing of the output. For UEI
implementations providing on-device execution, this might not always
be possible. In general, UEI implementations must attempt to
minimize the number of windows used during execution.

The syntax of the emulator command is described in Emulator
Execution.

preverify.exe (Optional) Runs the preverifier, which prepares class files to be run on
a device. The preverify command is required for emulators based
on CLDC.

The syntax of preverify is described in Preverifier Execution.
prefs.exe (Optional) Runs the emulator configuration utility. This can be used to

configure the emulator behavior. Because many IDE developers
prefer to maintain a common look and feel, this command is optional.
Provide this command with the emulator to assist in device

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 6

configuration. Each emulator has one prefs command.

NOTE: Changes made in prefs can affect the output of the
emulator's -Xquery option. Therefore, any IDE using -Xquery must
re-run and re-parse the -Xquery result after running the prefs
command.

The prefs command requires no command-line parameters.
utils.exe (Optional) Supports any additional utilities provided with the emulator.

For example, Sun's Java Wireless Toolkit implements the HTTPS
protocol. To support this protocol, Sun might include an HTTPS
certificate viewer and editor with its emulator. Each emulator has one
utils command.

The utils command requires no command-line parameters.
mekeytool.exe (Optional) Manipulates the emulator's keystore. The syntax for this

command is described in Key Tool Execution.

4 Preverifier Execution
The preverify command is required to accept the syntax described in this section. The
preverifier performs bytecode preverification on class files as defined in the CLDC specification.

The following command-line options must be accepted by preverify.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 7

Table 3 Preverifier Arguments

Option Description
-classpath list-of-
directories

Contains a list of locations containing classes that are referenced
by the classes being preverified.

Separate the list of directories and archives with semicolons (;) on
Microsoft Windows systems and colons (:) on UNIX and Linux
systems.

-d output-directory Directory for preverified output class files. Output files must be
created with their complete package tree. For example, write a
preverified class com.example.Main to
com/example/Main.class.

-cldc

-cldc1.0

Check preverified classes for use of language features that are
not part of the CLDC 1.0 specification (for example, native
methods, floating point, and finalizers) and ensure that the
preverified classes are in the correct format for CLDC 1.0 virtual
machines.

If classes are being preverified to run on CLDC 1.0 devices, this
option must be used. To preverify classes for CLDC 1.1 virtual
machines, use the -nofinalize and -nonative options.

The flags -cldc and -cldc1.0 are equivalent. If the emulator
declares (in response to emulator -version) that it only
suports CLDC version 1.0, then preverify need not accept the
-cldc1.0 parameter, and an IDE must not pass it this
parameter.

-nofinalize Checks that finalizers are not used in preverified classes.
-nonative Checks that native methods are not used in preverified classes.
-nofp Checks that floating point operations are not used in preverified

classes.
class-and-directory
names

A list of the following:

• Class files to be preverified

• Directories containing class files to be preverified.

Separate the list with spaces.
@file-path Read command-line arguments from the specified file. Place all

arguments on a single line and enclose directory names with
double quotes (“).

For example, the following preverifies the classes in tmpclasses for CLDC 1.0, using the APIs
in midpapi.zip:

preverify -cldc -classpath
C:\WTK23\lib\midpapi20.jar;C:\WTK23\lib\cldcapi10.jar -d classes
tmpclasses

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 8

The following preverifies the classes in tmpclasses for CLDC 1.1, using the APIs in
midpapi.zip and wma.zip:

preverify -nofinalize -nonative -classpath
C:\WTK23\lib\midpapi20.jar;C:\WTK23\lib\wma20.jar;C:\WTK23\lib\cldca
pi11.jar -d classes tmpclasses

5 Getting Information About the Emulator
The emulator command must provide information about itself upon request. This section
describes the mechanisms by which the emulator supplies this information.

5.1 Emulator Information Arguments
The emulator command must support several arguments that provide information about the
emulator itself.

Table 4 Emulator Information Arguments

-version Display version information about the emulator. The first line is the
emulator name and version. Subsequent lines are key and value
pairs separated by a single colon and a single space. The valid
keys and their values are as follows:

• Configuration: Configuration-Name[-Version]

• Profile: Profile-Name[-Version]

• Optional: Optional-API-Names

Optional-API-Names is a comma-separated list of optional API
names and versions. If an API name has an associated version,
the name and version are separated by a hyphen (-).

For example:

Sun Java Wireless Toolkit 2.3 Beta2
Profile: MIDP-2.0
Configuration: CLDC-1.1
Optional: J2ME-WS-1.0,J2ME-XMLRPC-1.0,JSR179-1.0,JSR180-
1.0,JSR184-1.0,JSR211-1.0,JSR226-1.0,JSR229-1.0,JSR238-
1.0,JSR239-1.0,JSR75-1.0,JSR82-1.0,MMAPI-1.1,SATSA-APDU-
1.0,SATSA-CRYPTO-1.0,SATSA-JCRMI-1.0,SATSA-PKI-1.0,WMA-
1.1,WMA-2.0

The configuration, profile, and API names and versions must
match the names and versions of APIs in API JAR file manifests, if
names and versions are specified there. See API Manifests for
details.

-Xquery Print emulator device information to the standard output and
immediately exit. Printed information includes, but is not limited to,
device names, device screen size, and other device capabilities. It

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 9

is possible to get information for a single device by using the
-Xdevice argument in conjunction with -Xquery.

See the section Query Format for a description of the output from
this option.

-help Display a list of valid arguments in human-readable form.

Some overlap exists between the output of emulator -version and the device-
name.apis properties returned from emulator -Xquery. The output of emulator
-version describes the generic behavior of the emulator using a typical configuration. The
output of emulator -Xquery describes in more detail the support provided by each device. It
is possible for a device to declare through the response to -emulator -Xquery that it
supports a different set of APIs than that described by emulator -version.

5.2 Return Code
If the execution of a MIDlet fails due to an uncaught exception, emulator must return a non-
zero return code.

5.3 Query Output
When the emulator is run with the -Xquery option, information describing the emulator and its
capabilities are sent to standard output. The general format is that of a properties file. Each
property line can be defined with this simplified BNF:

 property-line ::= comment | property
 property ::= key ':' value end-of-line

 end-of-line ::= '\n' | '\r\n'

 comment ::= '#' characters end-of-line

A key can contain any character other than a whitespace character or a colon (:). The value
can contain internal whitespace characters. However, it might also contain any of the standard
escaped characters: \t, \n, \r, \\, \", \', and \space (a backslash followed by a space). If
value is blank, the property defined by key is an empty string.

The properties returned apply to either all devices in the emulator or to a specific device. The
properties for all devices are listed in Table 5.

Table 5 Properties For All Devices

Name Value
uei.version (Optional) The version of the UEI specification supported by this

emulator. The value must be either 1.0 or 1.0.1. If this property is not
specified, its value is 1.0.

uei.arguments (Optional) A list of the UEI arguments supported by all devices. The
format of this list is described after this table. If this property is not
specified, its value is the following:

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 10

D,Xverbose,Xquery,Xdebug,Xrunjdwp,Xdevice,Xdescriptor,Xjam

This list can be overridden for a specific device, as described later.
device.list The value for device.list is a comma-separated list of device

names. Even if an emulator supports only one device, this property
must still be produced.

security.domains (Optional) A comma-separated list of security domains supported by the
emulator. This property is required if the mekeytool command is
present.

This list can be overridden for a specific device, as described later.

The uei.arguments list can include arguments as well as specific sub-commands. Separate
the arguments and sub-commands in the list with commas, using no spaces. If an argument
allows for a sub-command (for example, the -Xverbose argument), the sub-command must
be listed after the main argument following a colon. As a shorthand notation, sub-commands do
not need to be listed if all sub-commands are supported. However, if only a subset of sub-
commands is supported, every supported sub-command must be explicitly listed. For example,
if all -Xjam sub-commands are supported, but only the allocation and class -Xverbose
sub-commands are supported, uei.arguments line includes the following:

uei.arguments: Xjam,Xverbose:allocation,Xverbose:class, ...

The device-specific properties start with the device name. The device name must be one of the
values from the device.list property.

Table 6 Device-Specific Properties

Name Value
device-name.screen.width The width of the device screen in pixels.
device-name.screen.height The height of the device screen in pixels.
device-name.screen.isColor true for color screens, false for grayscale.
device-name.screen.bitDepth The number of bits that describe a pixel's color. For

grayscale screens, this property describes how many
bits are used to determine the level of gray.

device-name.screen.isTouch true for screens that support pointer events, false
otherwise

device-name.uei.arguments (Optional) Has the same meaning and syntax as
uei.arguments, but it applies to a specific device
and overrides the value of uei.arguments.

device-name.bootclasspath A list of API files that must be used to build a MIDlet
that runs on this device. The format is a comma-
separated list of fully qualified pathnames and/or
filenames. All paths or files must start with a drive
specifier1. A path or file might contain internal
spaces, but must never contain a comma. Trailing
spaces are ignored.

1. A drive specifier is not required if the emulator is running on a UNIX platform. However, for
the UNIX platform, the path or file must start with the root directory.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 11

This property may contain files (.zip, .jar, or
.class), directories, or both. Paths must use a
slash (/) as the directory separator. The application
processing this value might need to transform the
slash (/) into the proper directory separator for the
platform on which it is running.

device-name.apis (Optional) Contains the same information, in the
same format, as device-name.bootclasspath
and also includes any earlier versions of APIs
supported by this device. This enables an IDE to
select which versions of the API to use to build an
application. If this property is not present, its value is
the same as device-name.bootclasspath.

device-
name.version.configuration

(Optional) The configuration supported by this
device. A device can support only one configuration.
Emulators that support multiple configurations can
do so by providing separate devices for each.
Acceptable configuration names are:

CDLC-1.0
CDLC-1.1
CDC-1.0
CDC-1.1

device-name.version.profile (Optional) A list of one or more profiles supported by
this device. Multiple items are separated by commas.
Acceptable profile names are:

MIDP-1.0
MIDP-2.0
IMP-1.0
IMP-NG

device-name.security.domains (Optional) Has the same meaning and syntax as
security.domains, but it applies to a specific
device and overrides the value of
security.domains.

Emulators are free to return additional properties in response to -Xquery. IDEs must ignore
any properties that do not interest them.

An example response from the emulator -Xquery command follows:

List of supported devices
device.list: DefaultColorPhone
uei.version: 1.0.1
uei.arguments:

Xverbose,Xquery,Xdebug,Xrunjdwp,Xdevice,Xdescriptor,Xjam,Xautotest,Xheapsize
Properties for device DefaultColorPhone
DefaultColorPhone.description: DefaultColorPhone
DefaultColorPhone.screen.width: 240
DefaultColorPhone.screen.height: 320
DefaultColorPhone.screen.isColor: true
DefaultColorPhone.screen.isTouch: false
DefaultColorPhone.screen.bitDepth: 8

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 12

DefaultColorPhone.bootclasspath:
C:/WTK23/lib/midpapi20.jar,C:/WTK23/lib/cldcapi11.jar,C:/WTK23/lib/wma20.jar,C:/W
TK23/lib/mmapi.jar,C:/WTK23/lib/j2me-ws.jar,C:/WTK23/lib/j2me-
xmlrpc.jar,C:/WTK23/lib/jsr75.jar,C:/WTK23/lib/jsr082.jar,C:/WTK23/lib/jsr184.jar
,C:/WTK23/lib/jsr179.jar,C:/WTK23/lib/satsa-apdu.jar,C:/WTK23/lib/satsa-
pki.jar,C:/WTK23/lib/satsa-
crypto.jar,C:/WTK23/lib/jsr211.jar,C:/WTK23/lib/jsr238.jar,C:/WTK23/lib/jsr229.ja
r,C:/WTK23/lib/jsr180.jar,C:/WTK23/lib/jsr234.jar,C:/WTK23/lib/jsr226.jar,C:/WTK2
3/lib/jsr239.jar

DefaultColorPhone.stub.classpath: C:/WTK23/wtklib/emptyapi.zip
DefaultColorPhone.apis:

C:/WTK23/lib/cldcapi10.jar,C:/WTK23/lib/cldcapi11.jar,C:/WTK23/lib/midpapi10.jar,
C:/WTK23/lib/midpapi20.jar,C:/WTK23/lib/wma20.jar,C:/WTK23/lib/wma11.jar,C:/WTK23
/lib/mmapi.jar,C:/WTK23/lib/jsr75.jar,C:/WTK23/lib/jsr082.jar,C:/WTK23/lib/jsr184
.jar,C:/WTK23/lib/jsr179.jar,C:/WTK23/lib/jsr211.jar,C:/WTK23/lib/jsr238.jar,C:/W
TK23/lib/jsr229.jar,C:/WTK23/lib/jsr180.jar,C:/WTK23/lib/jsr234.jar,C:/WTK23/lib/
j2me-ws.jar,C:/WTK23/lib/j2me-
xmlrpc.jar,C:/WTK23/lib/jsr226.jar,C:/WTK23/lib/satsa-
apdu.jar,C:/WTK23/lib/satsa-jcrmi.jar,C:/WTK23/lib/satsa-
pki.jar,C:/WTK23/lib/satsa-crypto.jar,C:/WTK23/lib/jsr239.jar

DefaultColorPhone.security.domains:
manufacturer,minimum,identified_third_party,unidentified_third_party,maximum

6 Running Local Applications
An emulator can be run in one of two modes. The first, and most common for development, is
running a MIDlet directly from classes in the file system. The second mode, which is optional, is
to run the emulator according to the Over The Air (OTA) User Initiated Provisioning
Recommended Practice document, which is part of the MIDP 2.0 specification. This section
describes running applications on the emulator from the local file system.

The command line syntax is simple:

emulator [arguments] [MIDlet class name]

Two supported methods specify emulator parameters. One is the prefs command. The other
is the command-line interface. If both mechanisms are used, the command-line interface takes
higher precedence. Other mechanisms, such as environment variables or a system registry, are
not needed or required.

Table 7 lists the arguments for running local applications.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 13

Table 7 Arguments For Running Local Applications

Argument Description
-classpath Set the classpath for the emulator.

NOTE: A user of the UEI must never put API classes in the
-classpath command-line option. This includes any classes
automatically picked up from the lib directory or any classes
specified in the bootclasspath key returned by the -Xquery
command-line option. The restriction applies for both running
and debugging the MIDlet.

-Dproperty=value (Optional) Set the system property property to value in the
emulator. property can be any non-empty string.

For example:

emulator -Dmyproperty=myvalue ...

This can be used during development to pass parameters to an
application without rebuilding or repackaging it.

-Xdescriptor:jad-file (Optional) Run an application using the specified Java
Application Descriptor file.

-Xdevice:device-name (Optional) Run an application on the device specified by device-
name.

-Xheapsize:size[k|M] (Optional) Set the emulator's heap size to be a maximum of size
bytes. size can be written as a plain number to signify bytes.
Append either a k or an M to signify kilobytes or megabytes,
respectively.

For example, this command line runs the MIDlet PianoMIDlet from wj2.jar:

emulator -classpath wj2.jar PianoMIDlet

On an emulator with support for -Xdescriptor, this command line runs the MIDlet suite
defined in wj2.jad:

emulator -Xdescriptor:wj2.jad

NOTE: Although running from the file system implies an emulator running on the host PC, that
is not the only possibility. In fact, the implementor of the UEI could package the MIDlet class
files and synchronize them to a real device for execution.

7 Running in OTA Mode
When running the emulator in OTA mode, no mechanism exists to run or install an application
directly from a local file system. All MIDlet suites executed using OTA must be installed onto the

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 14

emulator or a device using OTA and HTTP.

Support for running via OTA is optional. An IDE cannot assume that running via OTA is
implemented, unless the emulator returns Xjam in a response to emulator -Xquery.

The basic syntax is:

emulator -Xjam:<arguments>

For example:

emulator -Xjam:install=http://example.org/Application.jad

The interactive application manager can be invoked by writing -Xjam without any additional
arguments, as follows:

emulator -Xjam

Additional arguments can be specified to instruct the emulator to perform specific actions, as
detailed in the following table.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 15

Table 8 Emulator OTA Arguments

OTA Extensions Description
-Xjam Run the interactive application manager.
-Xjam:command Instruct the application manager to perform a specific action.

The application is specified uniquely for each command. One
command must always be given.

There must be a system-defined application named all.
The all application refers to all user installed applications
and is only valid for specific commands. It is illegal to allow a
user installed application to be named all.

 Command Description

install=url Install an application onto the emulator from url, which must be
a valid URL.

HTTP URLs must be supported. An IDE must not assume that
any other protocol is available for installing applications.

force Use force in conjunction with install. If an existing
application has the same storage name as the application to be
installed, force removes the existing application prior to
installing the new application. For example:

 -Xjam:install=url -Xjam:force

run=application Run a previously installed application. The application

parameter must be a valid storage name or the storage
number of the MIDlet.

remove=application Remove a previously installed application. The application
parameter must be a valid storage name or the storage
number of the MIDlet. The system-defined application all can
be used to remove all installed applications.

transient=url Install, run, and remove an application. The url parameter must
be a valid URL pointing to the application's descriptor file.
transient is a shortcut for launching the emulator three
separate times to install, run, and remove the application.

list List all applications installed on the device and exit. The format

of the output is described later. After writing the list of
applications to standard output, emulator must exit.

storageNames List all applications installed on the device in a format easily
parsed by another program. Each line contains one storage
name in numerical order. Only the storage name is listed. The
order of the list is important. The first storage name must be
storage number 1. After writing the list of applications to
standard output, emulator must exit.

The -Xdevice and -Xheapsize arguments, presented previously, can be used in conjunction
with -Xjam.

The output from emulator -Xjam:list is as follows:

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 16

Header-lines
Installed-MIDlet-Suite-data
Blank-line

Zero or more header lines can be present. Do not parse header information. Zero or more
Installed-MIDlet-Suite-data blocks dan be present.

Each MIDlet suite is represented by an Installed-MIDlet-Suite-data block, which is defined as
follows:

[MIDlet-suite-number]
 Name: MIDlet-suite-name>
 Vendor: Vendor-name
 Version: MIDlet-suite-version
 Storage name: Storage-name
 Size: Application-size
 Installed From: URL
 MIDlets:
 MIDlet-name

MIDlet-Suite-number starts at 1 and counts up by 1 for each MIDlet Suite that is reported. The
Storage-name for the MIDlet suite can be used as an argument to the run and remove
commands of the -Xjam argument. Application-size can be expressed in bytes or kilobytes.
Kilobytes are indicated by appending K to the number. One or more MIDlet-name lines can be
present.

Starting from Name:, lines are indented by two spaces. Starting from the line after MIDlets:,
lines are indented by four spaces.

Here is one example of the output from -Xjam:list:

C:\WTK23\bin>emulator -Xjam:list
Running with storage root DefaultColorPhone
Running with locale: English_United States.1252
[1]
 Name: JBricks
 Vendor: Sun Microsystems, Inc.
 Version: 1.0
 Authorized by: ST=state;L=city;O=org;OU=orgUnit;CN=cName
 Description: Test game for the Payment API
 Storage name: #Sun%0020#Microsystems%002c%0020#Inc%002e_#J#Bricks_
 Size: 34K
 Installed From: http://localhost:2697/JBricks/bin/JBricks.jad
 MIDlets:
 jbricks
[2]
 Name: WirelessJava
 Vendor: Jonathan Knudsen
 Version: 2.0
 Storage name: #Jonathan%0020#Knudsen_#Wireless#Java_
 Size: 79K
 Installed From: http://localhost/midp/bin/WirelessJava.jad
 MIDlets:
 PianoMIDlet
 Jargoneer
 StationSignMIDlet
 QuatschMIDlet

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 17

C:\WTK23\bin>

8 Debugging and Testing
The emulator can offer additional features for producing diagnostic output, enabling a
debugger, and supporting automated testing. All of these features are optional; an IDE can
determine support by using -Xquery. This section describes these optional arguments to the
emulator command.

8.1 Generating Diagnostic Output
If the emulator supports generated detailed diagnostic output, the arguments are as follows.

Table 9 Emulator Diagnostic Output Arguments

Standard Extensions Description
-Xverbose Identical to -Xverbose:all.
-Xverbose:type-list Display tracing output for the different types of

information. type-list can be any combination of the
following types. Multiple output types can be specified by
separating them by a comma. For example, to see both
Garbage Collection and Class Loading, use -Xverbose
:gc,classes. Use all to see all output types.

Write diagnostic output to the standard output of the
emulator process. The format of the output is not
specified.

 Type Description
all All tracing options.

CAUTION: Displaying all diagnostic information is very
verbose and causes MIDlets to run slowly.

 allocation Prints every allocation on the emulator's heap and displays
overall heap usage statistics.

gc Prints every de-allocation on the emulator's heap, the inverse

of -Xverbose:allocation.

gcverbose Print detailed analysis of the garbage collection process.

CAUTION: This type produces lots of output.
 class Print class loading, creation, and initialization.

classverbose Print detailed information as the different parts of a class file
are loaded into the emulator.

CAUTION: This type produces lots of output.
 verifier Trace the emulator's internal class verifier.
 stackmaps Print class stackmap information.
 bytecodes Print each bytecode as the program executes.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 18

CAUTION: This type produces lots of output.

 frames Print stack frame information when they are pushed and
popped.

 stackchunks Print stack and stack chunk creation.
 exceptions Print all thrown exceptions, even if they are caught.

 events Print events (such as PENDOWN) as they are received by the
emulator.

 threading Print status of all threads in the system.

monitors Print information whenever the program enters or exits a
monitor.

CAUTION: This type produces lots of output.

networking Print detailed information for every network related method.

CAUTION: This type produces lots of output.

8.2 Connecting the Emulator to a Debugger
The emulator can support connecting an IDE to a debugger through the -Xdebug option. IDEs
can test for this feature by using -Xquery.

Table 10 Emulator Debugger Arguments

-Xdebug -Xrunjdwp
:name=value[,name=value[...]]

Enable runtime debugging. -Xdebug and
-Xrunjdwp are always used together. The name
and value pairs are used to control how a Java
Debug Wire Protocol (JDWP) session is created.
name is one of the options in the table below.
Appropriate values are determined by the option
name. Multiple name and value pairs can be
separated by commas.

 Name Description

 transport
The transport mechanism used to communicate with the
debugger. The default value dt_socket is the only
mechanism that must be supported.

 address
The transport address for the debugger connection. This can
be either host:port or port formats. In the port-only format, the
host is localhost.

 server
Start the debug agent as a server. The debugger must connect
to the port specified. The value must be either y or n. The
default is n.

 suspend
Suspend the VM immediately after establishing a connection
with the debugger, or not. Values must be either y or n. The
default is y.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 19

8.3 Using the Emulator for Automated Testing
Another optional feature of the emulator is automated testing, exposed through the
-Xautotest feature.

emulator -Xautotest:URL

Use -Xautotest to repeatedly download and run MIDlet suites from the specified URL. The
URL must use the HTTP protocol. This feature is useful in conjunction with a server that returns
a different test MIDlet each time the URL is accessed. You can think of -Xautotest as a
repeating -Xjam:transient argument.

The emulator should continue to repeatedly download and run applications from the given URL
until it receives an HTTP error when accessing the URL. The emulator should then exit.

9 Keytool Execution
If the mekeytool command is present, it must operate as described in this section.

mekeytool is used to add, remove, and list certificates. Certificates are used by an emulator
for the following purposes:

• Verifying an application when it is installed by the application manager
• Establishing a secure connection using HTTPS or SSL

mekeytool must accept the arguments described in Table 11.

Table 11 mekeytool Arguments

Argument Description
-list Lists installed keys to standard output.

The format of the output is defined below. After
writing the list, mekeytool should terminate.

-import [-keystore filename]
[-storepass password] -alias
key-alias [-domain domain]

Import a key from an existing keystore.

-delete -owner owner-name Delete the key with the given owner.
-delete -number key-number Delete the key with the given number.

Provide only one of the arguments -list, -import, or -delete. Do not provide any
arguments other than those listed in Table 11.

The format of the output from mekeytool -list is as follows:

Certificate-data
blank-line

Certificate-data consists of zero or more certificate blocks with the following form.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 20

Key Certificate-number
 Owner: Owner-parameters
 Valid from Date to Date
 Security Domain: Domain-name

Certificate numbers start at 1 and go up 1 for every certificate.

Owner-parameters is a semicolon separated list of owner parameters. Each owner parameter
looks like this:

key=value

Valid keys are CN, OU, OR, LO, ST, CO and EM.

A Date is in this form:

weekday month monthday time timezone year

Each field of this string has a fixed length.

weekday has three letters

month has three letters

monthday uses two digits to show the day of the month

time is expressed as two digits each for hours (on a 24 hour clock), minutes, and seconds,
separated by colons, as in HH:mm:ss

timezone is three letters

year is four digits

The Domain-name for the certificate must be one of the values returned in the security.domains
or device-name.security.domains properties returned from -Xquery.

The three lines following the Key line in each certificate block are indented two spaces.

For example:

C:\WTK23\bin>mekeytool -list
Key 1
 Owner: C=US;O=RSA Data Security, Inc.;OU=Secure Server Certification Authority
 Valid from Wed Nov 09 02:00:00 IST 1994 to Fri Jan 08 01:59:59 IST 2010
 Security Domain: untrusted
Key 2
 Owner: CN=Sun Microsystems Inc TEST CA;O=Sun Microsystems Inc
 Valid from Mon Nov 20 23:20:50 IST 2000 to Fri Nov 20 23:20:50 IST 2009
 Security Domain: trusted
Key 3
 Owner: CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
 Valid from Wed Jul 24 18:58:02 IDT 2002 to Sat Jul 21 18:58:02 IDT 2012
 Security Domain: trusted

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 21

10 API Manifests
JAR files containing emulator APIs in the lib directory should provide additional information to
IDEs by providing manifest files with the attributes listed in Table 12.

Table 12 API Manifest Attributes

Attribute Description
API Code name for the API. This name is only used

internally and has no significance beyond its use for
calculating API dependencies.

API-Name External name for the API. This text can be shown to
developers.

API-Specification-Version The version number of the specification that is
implemented by this JAR file.

API-Type Use one of the following values for this attribute.

• Configuration - The API is a configuration such
as CLDC.

• Profile - The API is a profile such as MIDP or
PDAP.

• Optional - The API is an optional API such as
MMAPI or WMA.

API-Dependencies A comma-separated list of APIs that are required by
the API contained in this JAR. Each API dependency
can contain just the code name of the API, or can
additionally contain = version-number to require
that a specific version be installed, or >= version-
number to specify that at least a certain version be
installed.

For example, the manifest of one JAR file might contain the following:

API: CLDC
API-Name: Connected Limited Device Configuration
API-Specification-Version: 1.0
API-Type: Configuration

Another JAR file's manifest might contain the following:

API: MIDP
API-Name: Mobile Information Device Profile
API-Specification-Version: 1.0
API-Type: Profile
API-Dependencies: CLDC >= 1.0

An IDE can use API manifests in conjunction with the device-name.apis properties returned

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 22

from -Xquery to select the versions of APIs with which it builds an application.

For example, an emulator might report the following for the device MyDevice:

MyDevice.bootclasspath:
C:/MyEmulator/lib/midp20.jar,C:/MyEmulator/lib/cldc11.jar

MyDevice.apis:
C:/MyEmulator/lib/midp20.jar,C:/MyEmulator/lib/midp10.jar,C:/MyEmula
tor/lib/cldc11.jar,C:/MyEmulator/lib/cldc10.jar

The bootclasspath property gives the default set of APIs, and the apis property includes
earlier versions of APIs.

Examining the JAR files referred to in the MyDevice.apis property, an IDE finds the following
data in the manifests.

Table 13 Example API Attributes

File API API-Name API-
Specification-
Version

API-Type API-
Dependencies

midp20.jar MIDP Mobile Information
Device Profile

2.0 Profile CLDC

midp10.jar MIDP Mobile Information
Device Profile

1.0 Profile CLDC

cldc11.jar CLDC Connected Limited
Device Configuration

1.1 Configuration

cldc10.jar CLDC Connected Limited
Device Configuration

1.0 Configuration

From this data, the IDE concludes that the following combinations of APIs are valid for this
device:

• CLDC 1.0, MIDP 1.0

• CLDC 1.0, MIDP 2.0

• CLDC 1.1, MIDP 1.0

• CLDC 1.1, MIDP 2.0

If the IDE then needs to build an application for CLDC 1.1 and MIDP 1.0, it uses the API files
cldc11.jar and midp10.jar.

Unified Emulator Interface Specification – Copyright © 2006 Sun Microsystems, Inc. 23

	1 Introduction
	2 Directory Structure
	3 Commands
	4 Preverifier Execution
	5 Getting Information About the Emulator
	5.1 Emulator Information Arguments
	5.2 Return Code
	5.3 Query Output

	6 Running Local Applications
	7 Running in OTA Mode
	8 Debugging and Testing
	8.1 Generating Diagnostic Output
	8.2 Connecting the Emulator to a Debugger
	8.3 Using the Emulator for Automated Testing

	9 Keytool Execution
	10 API Manifests

